Сердце
Автор статьи Зыбина А.М.
Сердце - это насос, обеспечивающий ток крови по кровеносным сосудам посредством повторных ритмичных сокращений. Сердце состоит из трех слоев (рис. 1). Внутренний – эндокард гомологичен эндотелию сосудов, средний – миокард состоит из кардиомиоцитов и несет сократительную функцию, наружний – эпикард состоит из соединительной ткани. Миокард человека имеет большую толщину, поэтому его питание обеспечивают коронарные артерии. Сердце окружено околосердечной сумкой – перикардом. Пространство между эпикардом и перикардом заполнено жидкостью, снижающей трение сердца о соседние ткани.
Рис. 1. Строение сердечной стенки.
Рис. 2. Внутреннее строение сердца.
Сердце состоит из предсердий (правое и левое), двух желудочков (правый и левый) (рис. 2). Правая и левая половины сердца не сообщаются и заполнены разными видами крови: правая – венозной (обедненной кислородом), левая – артериальной (обогащенной кислородом). Кровь всегда поступает в предсердия сердца по венам, переходит в желудочки и далее в артерии. Обратному току крови препятствуют клапаны сердца. Между предсердиями и желудочками располагаются створчатые клапаны: справа трехстворчатый (трикуспидальный), слева – двустворчатый (митральный). Между желудочками и артериями находятся полулунные клапаны: справа легочный, слева – аортальный (рис. 2, 3).
Рис. 3. Клапаны сердца.
Процесс сокращения называется систолой, расслабления – диастолой. Систола обоих предсердий происходит одновременно, как и систола обоих желудочков. Сердечный цикл в состоянии покоя составляет примерно 0,8 с. Из них – 0,4 с сердце полностью находится в диастоле, 0,1 с приходится на систолу предсердий и 0,3 с – на систолу желудочков. Во время общей диастолы и систолы предсердий открыты створчатые и закрыты полулунные клапаны. Во время диастолы желудочка закрываются створчатые клапаны, а когда давление в сердце начинает превышать давление в аорте, открываются полулунные клапаны.
Сердце сокращается автономно от нервной системы так как обладает миогенной автоматией. Это значит, что существуют узлы автоматии (ритмоводители), которые запускают сокращение сердца. Узлы автоматии расположены в определенных местах и подчиняются строгой иерархии (рис. 4). Главный узел автоматии, или узел автоматии первого порядка, располагается в месте впадения венозного синуса в правое предсердие и называется синусно-предсердный (сино-атриальный, SA-узел). В норме из этого узла возбуждение распространяется по всему сердцу и сердце сокращается в его ритме (60-80 уд/мин в состоянии покоя). Узел автоматии второго порядка расположен на границе предсердий и желудочков, и называется предсердно-желудочковый (атрио-вентрикулярный, AV-узел). Его ритм ниже (около 40 уд/мин) и при нормальной работе сердца не проявляется. Чтобы возбуждение распространялось быстро и сокращение КМЦ желудочка происходило синхронно, существуют специальные проводящие волокна: пучок Гиса, ножки Гиса и волокна Пуркинье. Эти клетки также могут генерировать спонтанные ПД с низкой частотой (около 20 уд/мин), поэтому такие волокна называют узлом автоматии третьего порядка. В норме этот ритм также не проявляется.
Рис. 4. Расположение узлов автоматии в сердце.
Несмортя на то, что сердце способно сокращаться автономно, нервная система корректирует частоту сердечных сокращений (ЧСС). Сино-атриальный узел получает влияние от вегетативной нервной системы. При действии парасимпатической нервной системы ЧСС снижается. Нейромедиатором в таком случае выступает ацетилхолин, а центры регуляции расположены в продолговатом мозге. Активация симпатической нервной системы приводит к увеличению ЧСС. Нейромедиатором служит норадреналин, а центры располагаются в верхних грудных сегментах спинного мозга. Регуляция со стороны нервной системы обеспечивает подстройку ритма сердца к нагрузке организма.
Рис. 5. Круги кровообращения.
Сердце человека обеспечивает непрерывную циркуляцию крови по двум кругам кровообращения: большому и малому. Большой круг кровообращения снабжает кислородом все ткани организма. Для эффективного транспорта крови в головной мозг и другие ткани, в левом желудочке и артериях большого круга развивается высокое давление. Большой круг кровообращения начинается в левом желудочке, откуда артериальная кровь поступает в левую дугу аорты и далее распределяется по артериям, артериолам и капиллярам. Капилляры – это обменные состуды, которые состоят из одного слоя клеток. Через них происходит диффузия газов, питательных веществ и метаболитов из крови и в кровь. Из капилляров венозная кровь собирается в венулы и вены. Вены, идущие от кишечника распадаются на капиллярную сеть в печени (воротная система печени), где происходит обезвреживание вредных веществ, которые могли поступить с пищей. Вены от нижних конечностей и органов брюшной полости собираются в нижнюю полую вену, от верхних конечностей и головы – в верхнюю полую вену. С задней стороны сердца полые вены сливаются в венозный синус, который впадает в правое предсердие, из которого кровь уходит на малый круг.
Малый круг кровообращения служит для обогащения венозной крови кислородом. Поскольку сердце и легкие располагаются примерно на одном уровне, в малом круге давление невысокое. По его артериям движется венозная кровь, а по венам – артериальная. Малый круг начинается с правого желудочка, сокращени которого приводит к выбросу крови а легочные артерии. Далее, кровь поступает в капилляры легких, где обогащается кислородом. Артериальная кровь собирается в вены, которые впадают в левое предсердие.
Рис. 6. Сердце при различных вариантах медицинского обследования. а) УЗИ, б) МРТ.
ЭКГ
Электрокардиография (ЭКГ) — это метод графической регистрации разности потенциалов электрического поля сердца, возникающего при его деятельности. Регистрация производится при помощи аппарата — электрокардиографа. Проще говоря, электрические импульсы распространяются по сердцу всегда в определенной последовательности. ЭКГ позволяет зарегистрировать распространение электрической активности сердца во времени.
Впервые запись электрокардиограммы произвел Огюст Дезире Уоллер (рис. 7). Он разрабатывал теорию электрических полей сердца, которую в последствии развил голландский физиолог Виллем Эйнтховен. Он же первым в 1906 г. использовал этот метод для диагностики. Эйнтховен развил не только теорию ЭКГ, но и методы стандартизации записи. За свои заслуги он удостоился Нобелевской премии по физиологии и медицине в 1924 году. Три стандартных отведения по Эйнтховену и в настоящее время является одним из основных способов исследования ЭКГ.
Рис. 7. Огюст Дезире Уоллер и первая запись ЭКГ.
Рис. 8. Стандартные отведения по Эйнтховену.
Чтобы измерять электрическую активность сердца, его необходимо поместить в систему координат. В качестве такой системы Эйнтховен принял треугольник, вершинами которого служат наложенные на руки и ногу электроды. Сторона треугольника, направленная от правой руки к левой называется первым отведением, от правой руки к левой ноге – вторым отведением, а от левой руки к левой ноге – третьим отведением. Распространение возбуждения является векторной величиной, на записи ЭКГ отражается проекция электрической активности сердца на каждое отведение. Если вектор совпадает с направлением отведения, то отклонение будет положительным, если они потивоположны – отрицательным (рис. 9).
ЭКГ, в случае стандартного наложения электродов, состоит из ряда периодически повторяющихся элементов. Положительные и отрицательные отклонения от изоэлектрической лини принято называть зубцами. Выделяют пять зубцов: P, Q, R, S, T.
Рис. 9. Проекция вектора распространения возбуждения в сердце на три стандартных отведения. Источник https://med.wikireading.ru/35207
Рис. 10. Расшифровка ЭКГ и ее соответствие фазам сердечного цикла. Источник http://1poserdcu.ru/diagnostika/rasshifrovka-ekg-u-detej.html
Зубец P является самым низкоамплитудным элементом ЭКГ и отражает распространение возбуждения по предсердиям. Когда предсердия охвачены возбуждением, на ЭКГ можно увидеть изоэлектрическую линию. При распространении возбуждения по желудочкам вектор несколько раз меняет направление. Этот процесс отражает QRS комплекс. Одновременно с этим происходит реполяризация предсердий. Реполяризацию желудочков отражает Т-зубец.
При различных патологиях сердца проводимость его частей для электричества изменяется, что приводит к нарушению структуры ЭКГ. Самым ярким примером нарушения может служить инфаркт миокарда. При инфаркте поражается группа КМЦ. Эти клетки больше не способны к проведению электричества. Из них выделяются метаболиты и нарушают состав межклеточного вещества и деятельность соседних клеток. Те, в свою очередь, закрывают щелевые контакты и перестают проводить электричество. В течение нескольких месяцев или лет, часть из этих клеток может восстановиться и вновь начать проводить ПД, другая часть - погибнуть. Поскольку самая толстая стенка и самая большая нагрузка в левом желудочке, в нем вероятность инфаркта максимальна. Следовательно, на ЭКГ будет изменяться QRS комплекс и T-зубец. Причем, из-за постоянного изменения количества проводящих клеток, форма ЭКГ будет меняться (рис. 11). Обычно к признакам инфаркта относят слияние QRS-комплекса и T-зубца наподобие «кошачьей спинки», сильное увеличение или инверсию Т-зубца.
Рис. 11. Изменение формы ЭКГ при инфаркте миокарда. Источник http://studopedia.info/9-34971.html
Рис. 12. Экг после инфаркта в трех стандартных отведениях. Источник http://zabserdce.ru/infarcire/infarkt-na-ekg.html