Физиология растений
На уровень вверх

Этилен

Автор Чергинцев Д. А.

Следующий гормон биотического стресса – этилен (С2Н4). Это простое низкомолекулярное газообразное вещество обладает, тем не менее, очень значительным комплексным действием на растения. По основному характеру воздействия этилен можно назвать гормоном механического стресса.

Впервые эффект, который этилен оказывает на растения, обнаружил в начале ХХ века Д.Н. Нелюбов, выращивавший в своей лаборатории горох. Его растения имели утолщенные укороченные проростки с согнутой в форме петельки верхушкой (рис 1), которая, помимо прочего, проявляла еще и горизонтальный рост.

За неимением электричества в то время все освещали газом. Лаборатория Нелюбова не была исключением. Поэтому действие этилена было выявлено именно поочередной обработкой растений различными продуктами сгорания светильного газа. Это открытие позволило объяснить преждевременное опадение листвы у деревьев, растущих рядом с уличными светильниками или в местах аварий на газопроводе.

Рецепторы к этилену расположены в мембране. Эти белки-рецепторы представляют собой целое семейство и имеют различное фенотипическое проявление ответа на стресс. Они представляют собой гомодимерные гистидинкиназы. Этилен связывается с ионом меди, в результате чего конформация рецептора меняется, что приводит к его автофосфорилированию и вызывает фосфорилирование киназ внутри цитоплазмы. При этом блокируется ингибиторное действие протеинкиназы STR1 на рецептор EIN2, расположенный в ядерной мембране.

Мутанты ctr1 (рис.4) имеют все признаки растений, обрабатываемых этиленом, что позволяет сделать вывод о том, что без воздействия этилена CTR1 связана с мембранной гистидинкиназой и блокирует весь путь. Внутриклеточный каскад, запускаемый этиленом, может идти через МАР-киназы. В результате внутри ядра активируются различные транскрипционные факторы. Так, фактор EIN3 (ethylene-insensitive) связывается с промотором белка ERF1, вызывая его транскрипцию. ERF1 (ethylene response factor) сам является транскрипционным фактором и взаимодействует с ERE-последовательностью (ethylene response element) в промоторах генов, продукты которых определяют ответ на этиленовый сигнал. На рисунке 3 показано, как путем ацетилирования и деацетилирования гистонов может происходить активация и сайленсинг генов. На картинке также изображен TATA-box сайт, который является важным цис-регуляторным элементом во многих генах: именно здесь начинает расплетаться двойная спираль (благодаря более слабым водородным связям пары А-Т), что необходимо для работы ДНК-зависимой РНК полимеразы. К нему присоединяются либо гистоны во время инактивации гена, либо факторы транскрипции TBP (TATA binding protein).Этилен может вырабатываться во всех клетках. Синтез гормона начинается с аминокислоты метионина и является частью цикла Янга, в ходе которого израсходованный метионин восстанавливается с затратой АТФ. Из метионина и АТФ S-аденозинметионин синтазой (SAM-синтаза) образуется S-аденозинметионин. Далее под действием АЦК-синтазы образуется метиладенозин, который далее участвует в реакциях цикла Янга, и 1-аминопропан-1-карбоновая кислота (АЦК). Под действием кислорода АЦК-оксидаза превращает АЦК в этилен и цианомуравьиную кислоту, которая разлагается на углекислый газ и цианид. Цианид не является смертельно ядовитым для растений из-за наличия у них в дыхательной цепи митохондрий альтернативной оксидазы, благодаря которой цианид не ингибирует митохондриальное дыхание.

Воздействие этилена на растение вызывает так называемый тройной ответ: угнетение роста побега продольным растяжением, усиление поперечного роста, нарушение геотропизмов.

  1. Нарушения тропизмов. В данном случае имеются в виду изменение отрицательного геотропизма побега, выраженного в горизонтальном росте макушки после формирования апикальной петельки (рис.1). Этиолированные растения синтезируют этилен в больших концентрациях, особенно сильно – в области растяжения ниже апекса. Этилен нарушает перераспределение переносчиков ауксина в клетках, тем самым изменяя полярный транспорт. В вогнутой части петельки образуется повышенная концентрация ауксина, что негативно сказывается на удлинении клеток. Биологический смысл данного ответа понятен: растению, не получающему света и не имеющему его источников для направленного роста, необходимо расти горизонтально, чтоб «найти» выход из области затенения как можно быстрее. Это же справедливо и для корней. При встрече растущего корня с препятствием, которое невозможно преодолеть, возникает стрессовая реакция, влекущая за собой синтез этилена. В результате корень принимает горизонтальное положение роста и может обогнуть препятствие.
  2. Известно, что комплекс синтеза целлюлозы в растениях расположен в мембране и выделяет наружу целлюлозные цепи, собирающиеся в микрофибриллы во внешней среде. Этот целлюлозосинтазный комплекс с внутренней стороны мембраны связан с микротрубочками и идет по ним, как по рельсам. В норме в клетках микротрубочки расположены поперек оси удлинения клетки, соответственно, фибриллы целлюлозы откладываются перпендикулярно направлению растяжения, формируя каркас наподобие пружины. Этилен вызывает в растениях переориентацию цитоскелета из микротрубочек. Кортикальные микротрубочки приобретают продольное расположение, и фибриллы целлюлозы начинают откладываться тоже продольно, в результате клетки теряют способность к удлинению в вертикальном направлении и приобретают возможность расти горизонтально. Фенотипически это проявляется в сильно укороченном росте растений и утолщенном стебле.
  3. У многих растений водных сред обитания этилен образуется в ответ на постоянное затопление. В данном случае синтез фитогормона вызывает утолщение тканей органов и образование аэренхимы – особой воздухоносной ткани с крупными межклетниками.
  4. Этилен является главным гормоном старения. Как уже говорилось ранее, это основной гормон, отвечающий за сбрасывание листьев (абсцизовая кислота – ответ на засуху). К листопаду приводит множество разных факторов, таких как физиологическая сухость, накопление ядовитых веществ, понижение температуры и уменьшение длины светового дня, механический стресс. Опадение листьев (а также плодов и других частей растения) происходит путем образования отделительного слоя (рис.5) у основания черешка листа. Под влиянием этилена рядом с местом отделительного слоя начинается частичное опробковение тканей. При этом выделяются пектиназы, целлюлазы и другие ферменты, разрушающие клеточные стенки уже непосредственно в месте будущего разделения. Из остатков разрушенных полисахаридов образуются олигосахарины, вызывающие дальнейшее размягчение тканей. В конечном счете механическая прочность настолько сильно уменьшается, что лист легко опадает. Сам процесс закладки отделительного слоя зависит от баланса между ауксином и этиленом. Когда ИУК много, этиленовые сигналы блокируются; при падении концентрации ИУК клетки черешка листа становятся чувствительными к эндогенному этилену.

5. Этилен ингибирует рост корней в длину, но важен для образования боковых корней и образования корневых волосков (рис.6).

  1. Благодаря механическому стрессу этилен способствует закладке механических тканей в стеблях растений. Данная закономерность является объяснением одной из причин проблем в известном проекте «Биосфера-2», созданном в конце ХХ века для моделирования жизни в потенциальных колониях на Марсе. По условиям проекта комплекс должен быть полностью изолирован от внешней среды и автономен, чтоб соответствовать условиям Марса. Внутри «Биосфереы-2», чья площадь занимала 1,5 га, были созданы искусственные биотопы, в том числе тропический и мангровый леса, саванны и пустыни. Среди многочисленных бед, которые не давали растениям нормально развиваться, можно назвать и отсутствие ветра. Ветер, дующий на растения, воздействует на них механически, что вызывает выработку этилена и стимулирует образование механических тканей. Проведя всю жизнь в таком полном «штиле», деревья «Биосферы-2» имели тонкие и очень хрупкие стволы.
  2. Созревание плодов. Развитие плода начинается с оплодотворения завязи. Уже при прохождении пыльцевой трубки сквозь ткань столбика начинается механическое воздействие на ткани, которое приводит к выработке этилена. Этилен будет активно принимать участие в дальнейшем развитии цветка и формировании плода. Он же вызывает увядание стерильных элементов цветка и тычинок, поэтому в цветоводстве часто срезанные цветы обрабатывают ингибиторами этилена. Исключением являются Бромелиевые, у которых этилен, наоборот, стимулирует цветение. При формировании и созревании плодов, что можно рассматривать как процесс старения, этилен действует на разные растения по-разному. Плоды проходят фазу так называемого интенсивного дыхания, которая может происходить в разное время: при созревании (такие плоды называются климактерическими) и при старении – (неклимактерические плоды). Плоды с климактерическим типом дыхания при обработке этиленом ускоряют свое созревание. К ним относятся бананы, томаты, персики, груши, яблоки. У плодов, не имеющих пика дыхания при созревании (вишня, земляника, виноград, цитрусовые),этилен не вызывает ускоренного созревания. Свойства климактерических плодов, вырабатывающих эндогенный этилен при дыхании, широко используются в торговле. Так, сорванные зеленые бананы в тропических странах транспортируются в рефрижераторах, из которых постоянно откачивается и отфильтровывается этилен. Непосредственно перед отправкой потребителю плоды обрабатывают этиленом, за счет чего они быстро созревают. То же с томатами. Собранные зеленые плоды кладут в темное место (как уже было сказано, этиоляция тоже представляет собой механический стресс и способствует биосинтезу этилена), где они постепенно дозревают. Если к ним положить уже спелый или даже слегка подпорченный плод (т.е. активно вырабатывающий этилен), созревание пойдет гораздо быстрее.

  1. Этилен влияет на заживление ран. Всякое ранение связано с сильным механическим стрессом, и, соответственно – с выработкой этилена. При ранении под действием этилена происходит образование раневого камбия, который экзархно откладывает раневую перидерму. Перидерма представлена прочной гидрофобной тканью, создающей непроницаемый барьер перед раной.

Латекс у растений – коллоидный раствор, содержащий диспергированные микрочастицы каучука, эмульгированные поверхностно-активными веществами. Такую природу имеет и млечный сок бразильской гевеи (Hevea brasiliensis). Каучук в млечниках растения содержится в виде жидкого сока, а при повреждении быстро твердеет, закупоривая таким образом рану и предотвращая проникновение патогенов. На затвердение латекса влияет именно этилен. На плантациях гевеи широко используются ингибиторы этилена. 

  1. Борьба с патогенами и вредителями. Находясь всю жизнь в относительно неподвижном состоянии и не имея возможности спастись от опасности бегством, растения вынуждены «вооружаться» целым арсеналом биохимических методов защиты. В этом, надо сказать, они достигли совершенства. Механизмы иммунного ответа растений довольно сложны и затрагивают практически весь метаболизм клеток. Кажется невероятным, однако иммунная защита растений настолько продумана, что может сравниться с иммунитетом животных. Так, у растений есть как избирательный и локальный иммунный ответ, так и комплексные неспецифические реакции. Растения развивают иммунологическую память к патогенам, которая сравнима с вторичным иммунитетом животных и представляет собой изменение хроматина в генах устойчивости к патогенам.

В некоторых формах иммунного ответа участвует и этилен.

Известный пример защиты растений от фитофагов – выделение таннинов африканскими акациями. Когда антилопы поедают листья деревьев, выделяется этилен, в ответ на который акации образуют токсичные для животных полифенольные соединения – таннины. Интересно, что этилен, будучи летучим веществом, попадает в воздух и распространяется с ветром, из-за чего растения на довольно большой площади начинают вырабатывать таннины и становятся ядовитыми.

В некоторых растениях под воздействием этилены вырабатываются фитогемагглютины, склеивающие эритроциты, и разнообразные ингибиторы протеиназ, нарушающие пищеварение.

Для борьбы с насекомыми и низшими грибами растения имеют специфические ферменты – хитиназы. Хитиназы разрушают покровы насекомых и клеточные стенки грибов, содержащие хитин. Кроме того, продукты распада хитина служат специфическими «антигенами», которые распознаются растениями. В результате в клетках растений отключаются системы гашения активных форм кислорода, и возбудитель подвергается воздействию разнообразных активных форм кислорода (пероксид водорода, супероксид-анион, и др.). При этом часть растительного организма уничтожается вместе с возбудителем в ходе реакции сверхчувствительности, в которой этилен тоже играет немаленькую роль.

Этилен вызывает в клетках, находящихся рядом с зоной поражения, синтез фитотоксинов – фитоалексинов. Фитоалексины – это вещества разнообразной химической природы (гликозиды, терпеноиды, алкалоиды, фенольные соединения). Существует и множество других играющих важную роль в защите растений веществ: например, это лектины, ингибиторы протеиназ, и т. д., как действующие как против патогена, так и усиливающие защитные характеристики самого растения.

Как было указано ранее, высокие концентрации ауксина вызывают эффекты, противоположные характерным для данного гормона. В частности, обработанные высокими концентрациями искусственного ауксина (2,4,5-трихлорфеноксиуксусная кислота и другие вещества) растения воспринимают это как стрессовую ситуацию и отвечают эндогенным синтезом этилена, приводящим к листопаду. Это свойство было использовано армией США во время военных действий против партизан во Вьетнаме. Растения обрабатывали печально известным «Agent Orange». Помимо экологической катастрофы на большой территории – уничтожения тысяч гектар растительности - пострадали также и люди. Входящие в состав «Agent Orange» диоксины (рис.8) представляют собой опаснейшие мутагены. Жертвами этой акции стали свыше миллиона человек.